COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the course		4606-ES-0000EHI-0108		Name of the course	Polish	Modelowanie spalania turbulentnego		
				Name of the course		English	Modelling of turbulent combustion	
Type of the course		speciality subject	ct		_			
Course coordinator		Prof.dr hab.inż. Andrzej Teodorczyk						
Implementing unit		Faculty of Power and Aeronautical Engineering		Scie	entific discipline / disciplines*	Mechanical Engineering / Environmental Engineering Mining and Power Engineering / Chemical Engineering		
Level of education		docto	ral		Semester		summer	
Language of the cours	se	English	lish					
Type of assessment	:	Passing with	the grade	N	lumber of hours in a semester	30	ECTS credits	2
Minimum number of participants		12	2		Maximum number of participants	50	Available for studen (MSc)	ts Yes/ No
Type of classes			Lecture	9	Auditory classes	Project classes	Laboratory	Seminar
Number of hours	j	in a week	2					
Number of flours	in	a semester	30					

^{*} does not apply to the Researcher's Workshop

1. Prerequisites

Thermodynamics, combustion, fluid mechanics and numerical methods

2. Course objectives

knowledge and skills in the field of theoretical and numerical modeling of laminar, turbulent and detonative combustion

3. Course content (separate for each type of classes)

Lecture

- 1. Introduction 1h
- 1. Fundamentals of turbulent flow 3h
 - 2.1. Definition of turbulence
 - 2.2. Turbulence formation
 - 2.3. Statistical concepts of turbulence
 - 2.4. 3D spectrum of turbulence
 - 2.5. Dynamics of vorticity and energy cascade
 - 2.6. Influence of density changes on vorticity and turbulence
 - 2.7. Transport processes in turbulent flow
- 2. Conservation equations for reacting flows 2h
 - 3.1. General forms
 - 3.2. Simplified forms
- 1. Laminar premixed flames 3 h
 - 4.1. Conservation equations and numerical solutions
 - 4.2. Steady 1D flames
 - 4.3. Theoretical solutions
 - 4.4. Flame thickness
 - 4.5. Flame stretch
 - 4.6. Flame speeds

Warsaw University of Technology

- 4.7. Instabilities of laminar flame fronts
- 2. Laminar diffusion flames 3h
 - 5.1. Theoretical tools
 - 5.2. Flame structure for infinitely fast chemistry
 - 5.3. Full solutions for infinitely fast chemistry
 - 5.4. Real diffusion flames
- 3. Introduction to turbulent combustion 4h
 - 6.1. Interaction between flames and turbulence
 - 6.2. Computational approaches to turbulent combustion
 - 6.3. RANS simulations
 - 6.4. DNS simulations
 - 6.5. LES simulations
 - 6.6. Chemistry for turbulent combustion
- 4. Turbulent premixed flames 4h
 - 7.1. Turbulent premixed flames regimes
 - 7.2. RANS of turbulent premixed flames
 - 7.3. LES of turbulent premixed flames
 - 7.4. DNS of turbulent premixed flames
- 8. Turbulent non-premixed flames 4h
 - 8.1. Turbulent non-premixed flames regimes
 - 8.2. RANS of turbulent non-premixed flames
 - 8.3. LES of turbulent non-premixed flames
 - 8.4. DNS of turbulent non-premixed flames
- 9. Flame/wall interactions 2h
- 10. Flame/acoustics interactions -2h
- 11. Detonative combustion 2h

Laboratory

4. Learning outcomes				
	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*	
Knowledge				
K01	Conservation equations for multicomponent	SD_W2	Written	
KUI	flows with combustion and their simplification	SD_W3	colloquium	
K02	Numerical methods of laminar premixed	SD_W2	Written	
NU2	combustion	SD_W3	colloquium	
K03	Numerical methods of laminar diffusion	SD_W2	Written	
NO3	combustion	SD_W3	colloquium	
K04	Basic concepts of turbulent combustion modelling	SD_W2	Written	
		SD_W3	colloquium	
K05	Models of turbulent premixed flames	SD_W2	Written	
		SD_W3	colloquium	

Warsaw University of Technology

К06	Models of turbulent diffusion flames	SD_W2	Written	
ROO		SD_W3	colloquium	
K07	Models of the interaction of flames with walls	SD_W2	Written	
KU/		SD_W3	colloquium	
К08	Models of combustion couplings with acoustics	SD_W2	Written	
NUO		SD_W3	colloquium	
К09	Detonative combustion	SD_W2	Written	
KU9		SD_W3	colloquium	
Skills				
S01	Creating a mathematical model of the	SD_U1, SD_U2,	Project evaluation	
301	combustion process	SD_U4, SD_U6	1 Toject evaluation	
S02	Using numerical simulations to analyze the	SD_U1, SD_U2,	Project evaluation	
	combustion process	SD_U4, SD_U6		
S03	Interpreting the results of numerical simulations	SD_U1, SD_U2,	Project evaluation	
303	of combustion	SD_U4, SD_U6		
Social competences				
SC01		SD_K1		

^{*}Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

The final grade is the result of the evaluation from colloquia and the evaluation of the project (results, report)

6. Literature

Basic literature:

- 1. T.Poinsot, D.Veynante: Theoretical and Numerical Combustion, Third Edition by authors, 2011
- 2. Turbulent Combustion Modeling, Advances, New Trends and Perspectives, T.Echekki and E.Mastorakos Eds., Springer 2011
- 3. R.S.Cant, E.Mastorakos: An Introduction to Turbulent Reacting Flows, Imperial College Press, London, UK (2008)

Supplementary literature:

- 1. R.O.Fox: Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, UK (2003)
- 2. N.Peters: Turbulent Combustion, Cambridge University Press, 2001
- 3. E.S.Oran, J.P.Boris: Numerical simulation of reactive flow, Cambridge University Press, 2001
- 4. R.Borghi: Turbulent combustion modeling, Prog. Energy Comb. Sci., 14(4) 1998
- 5. J.Janicka, A.Sadiki: Large Eddy simulation for turbulent combustion, Proc. Combust. Inst. 30: 537-547, 2004
- 6. H.Pitsch: Large eddy simulation of turbulent combustion, Ann.Rev.Fluid Mech., 38:453-482, 2006
- 7. S.B.Pope: Pdf methods for reactive flows, Prog.Energy Combust.Sci., 19(11), 1985
- D. Veynante, L. Vervisch: Turbulent combustiom modeling, Prog. Energy Combust. Sci. 28:196-266, 2002

7. PhD student's workload necessary to achieve the learning outcomes**		
No.	Description	Number of hours

Warsaw University of Technology

	ECTS credits	2
	Total number of hours	60
4	Amount of time devoted to the preparation for exams, test, assessments	10
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	10
2	Hours of consultations with the academic teacher, exams, tests, etc.	10
1	Hours of scheduled instruction given by the academic teacher in the classroom	30

^{** 1} ECTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)